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Abstract

With large-scale modern video games such as “Ghost of Tsushima” or even unbounded
game worlds such as “Minecraft”, players are now faced with large and sometimes
infinite exploration possibilities. Manually producing vast game worlds with such
levels of detail requires costly resources that indie game developers might not have.

In this capstone project, I will explore the procedural content generation of realistic-
looking game worlds, specifically ecosystems, using algorithms. The focus will
mainly be on overcoming physical memory and CPU limitations. The goal is to
produce a full-fledged ecosystem generator and allow game designers and developers
to build on top of it to produce playable media for both entertainment and serious
purposes.

Keywords: Procedural content generation, 3D ecosystems, Game design, Noise,
Fractal Brownian Motion, L-systems, Hydraulic erosion
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1 Introduction

Procedural content generation (PCG) refers to the algorithmic generation of content
in media with limited human intervention [1]. PCG can be used to create 2D and
3D art, stories, dialogue, music, levels, maps, textures, and other game content.
It provides large, interesting, and varied content that enhances the gameplay
experience. Additionally, with the increasing use of affective gaming [2], PCG
can be used to adjust the game design to personalize content [3] and maximize
player satisfaction.

In video games, PCG has been used since the late 1970s but became famous in the
early 1980s with games such as Elite by David Braben [4]. The latter procedurally
generated entire galaxies with stars, planets, moons, and stations. In recent years,
modern games such No Man’s Sky [5] are able to procedurally generate infinite
amounts of deterministic content. PCG also allows creators of serious games to
focus more on the educational aspect rather than environmental design.

Figure 1.1: Left: Elite (Braben 1984). Right: No Man’s Sky (Hello Games 2016).

One of the benefits of PCG is overcoming memory limitations, especially for
console games. With vast game worlds being resource-intensive, storing algorithms
and generating content at runtime is far more efficient than storing a myriad
of meshes. It is also time-consuming for artists to generate large landscapes as
duplication with slight tweaks can look unnatural. The content is also consistent
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and adjustable with pseudo-random PCG allowing indie game studios to produce
large game worlds in spite of budget limitations.

Although the advantages of PCG are numerous, it can be difficult to produce
natural-looking results. The algorithms used for high-fidelity content production
can be CPU costly which is impractical for real-time generation. This report
will explore the algorithms used in PCG to produce realistic ecosystems while
addressing the previously mentioned challenges. The results can be extended to
urban game worlds by adding custom algorithms for buildings and roads.
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2 Technology Stack

Concerning the technologies that are used in this project, I settled for C# with
Unity3D as the game engine. Contrary to Unreal Engine 5, Unity3D is
a mature game engine with a larger community for obtaining advice concerning
problems and improvements. Additionally, given my technical expertise and familiarity
with Unity3D I prefer to focus on the algorithms rather than picking up new
technology. For version control, I used GitHub � to back up my code and keep
track of commits.

To implement this project, I was using an MSI GF65 Thin 9SD-004 15.6” 120Hz
Gaming Laptop - Intel Core i7-9750H - GTX1660Ti and settled for no ray tracing
given the limitations of my graphic card. All the listed software and hardware
required were available and reliable to ensure the timely delivery of the project.
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3 Related Work

In studies closely related to this work, methods for automatically generating
natural objects were investigated [6]. For terrain generation, noise maps are created
using Fractal Brownian Motion (FBM) [7] based on 2D Perlin noise which generates
layers of noise by interpolating points in a random vector grid. Whereas for plants,
the Lindenmayer system [8] is utilized as a context-free grammar to simulate the
complex branching of trees.

Another work developed a tool named Charack for the real-time generation of
pseudo-infinite 3D worlds [9]. The focus of the latter was on achieving a smooth
transition between heightmap blocks while optimally storing data for a large-
scale world. The continents map was created using an external tool [10] and
information about terrain types was stored in a macro-matrix (MM). To optimize
memory utilization, an MM’s entry maps to multiple vertices in the virtual world.
According to the terrain type, height values are applied for each vertex in the 3D
world. The result is rendered as a triangles mesh that is texturized according to
the height value of each vertex in the mesh. Coastline algorithms were applied
when the vertex is mapped to an offshore entry in the MM for a smooth transition
between water and land and mini islands were spawned to disturb the sea.

On top of fractal noise, a technique called “level of detail” (LOD) is used to
optimize the GPU’s utilization in large-scale worlds [11]. With LOD, the number
of triangles is reduced in meshes that are out of the player’s field of vision.

Other authors used deep convolutional generative adversarial networks to generate
maps [12], but it’s yet to result in landscapes as visually appealing as the ones
obtained using Perlin noise. However, such machine learning methods proved
efficient in 2D level generation [13].
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4 Design & Implementations

4.1 Noise Functions

Noise functions in computer graphics are sequence generators of random or pseudo-
random values between 0 and 1. It was initially developed in the mid-80s when
computers had limited memory and images were inefficient for texturing. This
section describes white noise, value noise, Perlin noise, Simplex noise, and fractal
noise. For visualization purposes, the noises are displayed in 2D.

4.1.1 White Noise

White noise functions use random number generators to obtain noise values between
0 and 1. As a result, spatially close points can have values of high variance which
is uncommon in patterns in nature. In the latter, points that are close to each
other are similar while points that are far apart tend to differ. Reproducing similar
patterns with different function calls can also be problematic with white noise due
to its unpredictability. Therefore, it is unsuitable for texturing and height maps.

Figure 4.1: White noise
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4.1.2 Value Noise

Value noise creates random values spaced at regular intervals. In 2D, we start
by generating a grid. We then generate random floats in the interval [0, 1] at the
vertex positions of the grid as shown in Figure 4.2.

Figure 4.2: The random values in 2D value noise at vertex positions

To obtain the remaining points’ values inside each cell we will bilinearly interpolate
using the surrounding cell vertices. The result is a noise full of visual artifacts as
seen in Figure 4.3.

Figure 4.3: One interation of 2D value noise
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4.1.3 Perlin Noise

Perlin noise [14] is a gradient noise developed by Ken Perlin in 1983 and improved
in 2001. To generate the noise we create a (width × height) grid. The algorithm
is then called for each (x, y) grid vertex coordinate and returns a float value in the
range [0, 1].

Figure 4.4: Perlin noise

For each input coordinate, we take modulus 1 to obtain the unit square. We then
generate a pseudo-random gradient vector for the corners of the unit square.

Figure 4.5: Unit square with 4 pseudo-random gradient vectors

15



To remove directional bias, those gradients are picked from the following pool of
vectors to avoid the direction of coordinate axes and long diagonals:


(1, 1, 0), (−1, 1, 0), (1,−1, 0), (−1,−1, 0)

(1, 0, 1), (−1, 0, 1), (1, 0,−1), (−1, 0,−1)

(0, 1, 1), (0,−1, 1), (0, 1,−1), (0,−1,−1)

(4.1)

For each point P inside the unit square, we compute the dot product between the
gradient vector in each corner and the distance vector between P and that corner.
We then linearly interpolate the four resulting products.

Figure 4.6: Gradient vectors in blue and distance vectors in green for point P

The output of the previous step is a noise full of interpolation artifacts. To make
the transition between grid cells smoother, we apply the fade function:

6t5 − 15t4 + 10t3 (4.2)
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Figure 4.7: Fade Function 4.2

By using gradients instead of random values, the distribution of frequencies is more
regular than that of value noise.

4.1.4 Simplex Noise

Simplex noise [15] is also a gradient noise developed by Ken Perlin. Unlike Perlin
noise which relies on a hypercubic grid, this noise implementation is based on a
simplex grid. A simplex is the simplest polyhedron in geometry. A simplex is a
triangle in 2D, a tetrahedron in 3D, etc.

With a grid of equilateral triangles, we wish to obtain the relative coordinates
of our map points. We do that by matching our noise map to a square region.
Afterwards, we recover the original coordinates by skewing each cell from square
to rhombus. Since the skewing is performed by translating the points along the
XY diagonal, we have to subtract some skew value s.
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Figure 4.8: Skewing from square to rhombus

First, notice that in Figure 4.8 A with initial coordinates (0,0) remains the same,
while B and C with initial coordinates (1,0) and (1,1) respectively are skewed.
Therefore, the skewing depends on the coordinates in addition to the skewing
factor s. We obtain:

B =
1− s(xB + yB)
0− s(xB + yB)

 =
1− s(1 + 0)
0− s(1 + 0)

 =
1− s

−s

 (4.3)

and

C =
1− s(xC + yC)
1− s(xC + yC)

 =
1− s(1 + 1)
1− s(1 + 1)

 =
1− 2s
1− 2s

 (4.4)

with s being the skewing factor that depends on the coordinates. To find the
skewing factor s, we solve for ||AB||2 = ||AC||2, this yields s = 3−

√
3

6 . Similarly, to
unskew and convert triangles to squares, we solve for the opposite direction and
get the factor u =

√
3−1
2 .

Using the triangular lattice as our starting point, we floor our skewed coordinates,
to determine which cell contains our point and the relative coordinate. Then we
compare the coordinates’ magnitudes to determine whether our point lies in the
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upper or the lower triangle.

x > y

x < y

Figure 4.9: Finding the simplex where a point lies

Instead of linear interpolation, each vertex of the simplex is hashed into a pseudo-
random gradient direction after unskewing and the corners contributions are summed,
normalized, and returned.

Each corner contribution is computed as follows:

(0.5− d2)4 · (< ∆x,∆y > · < ∇x,∇y >) (4.5)

with d the distance to the point, and ∆x and ∆y the relative coordinates of the
point in the simplex.
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Figure 4.10: One iteration of 2D Simplex noise

4.1.5 Noise Algorithms Benchmark

The following is a summary of the previously mentioned noise algorithms and their
efficiencies [16]:

Table 1: Efficiency Benchmark of Noise Algorithms

Algorithm Speed Memory
Requirements Quality of results

White Noise Fast Very Low Very Low
Value Noise Fast Very Low Low - Moderate
Perlin Noise Moderate Low High
Simplex Noise Moderate but Scalable Low Very High

To produce the best-looking results while taking into consideration memory utilization
and fast real-time generation, Perlin Noise with a time complexity of O(N · 2N)
and Simplex Noise with a complexity of O(N2) for N dimensions are ideal for this
project.
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4.1.6 Fractal Brownian Motion

Fractal Brownian Motion (FBM) noise is obtained by layering similar or different
noise maps. The number of iterations is referred to as octaves. In each octave, we
can increase the frequency of noise thus increasing the level of details by setting
a factor called lacunarity. A lacunarity of 2 means that each octave will have
double the number of details of the previous one. Additionally, we can also decrease
how much each octave contributes to the overall shape by setting a factor called
persistence. A persistence of 0.5 means that each octave will have half the
amplitude of the previous one.

Figure 4.11: 7 Octaves of Perlin Noise with a lacunarity of 1.7 and a persistence
of 0.5
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Figure 4.12: 7 Octaves of Simplex Noise with a lacunarity of 1.7 and a persistence
of 0.5

4.2 Colour Map

To make the noise maps look like an ecosystem, I treat the pixel values as height
levels in my environment and assign different colors to different height intervals.

Figure 4.13: Colour Map of 2D Perlin Noise
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Figure 4.14: Colour Map of 2D Simplex Noise

One can notice from Figures 4.13 and 4.14 that the water-to-land ratio is not
proportional. In nature, water is less frequent than what we notice with 2D
Simplex noise and more frequent than the occasional pools of water obtained with
2D Perlin noise. To achieve a more realistic water to land ratio, I settled for 3
octaves of Perlin noise and 4 octaves of Simplex noise with a lacunarity of 1.7 and
persistence of 0.4. The result can be shown in Figure 4.15.
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Figure 4.15: 3 iterations of Perlin noise and 4 iterations of Simplex noise

4.3 Mesh Generation

The next step is converting our 2D noise to a 3D mesh. In game engines, meshes
are triangulated because every shape can be made out of triangles. The latter are
always guaranteed to be flat. We do not have to worry about our points being
co-planar which is computationally expensive to check nor how to apply textures
to our mesh if the vertices are not co-planar.
To create a mesh with parameters width w and height h, the number of vertices
is:

NumberVertices = (w + 1) · (h+ 1) (4.6)

Additionally, the number of triangle vertices making up the mesh is:

NumberTriangles = 6 · w · h (4.7)
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Given the previous parameters, we procedurally generate a sequence of lower and
upper triangles to obtain our final mesh.

0

1

2
Figure 4.16: Mesh triangulation in game engines

Finally, we create an array that holds UV data, assign texture coordinates to it,
recalculate normals, and create our mesh. To create a mesh in Unity3D, one
should pass the vertices, UVs, and triangles to it [17].

Figure 4.17: Converting the 2D map to a 3D mesh
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The current mesh is flat as the heights are float values between 0.0 and 1.0. We
multiply by a height multiplier and flatten vertices at sea level to obtain a realistic
terrain.

Figure 4.18: 3D mesh with a height multiplier

4.4 Erosion

Fractal noise on its own creates interesting landscapes. However, valleys and
mountains appear to have similar characteristics whereas they are clearly distinguishable
in the real world. Additionally, lower areas are not flat enough to navigate on.
In order to add realism for a more immersive experience, erosion algorithms are
applied [18]. Two of the most studied types of erosion are hydraulic and thermal
erosion.

4.4.1 Hydraulic Erosion

Hydraulic erosion models water starting somewhere on the terrain and picking up
soil as it flows downhill, deposits its carry as sediment, and eventually evaporates.
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Over the years, two approaches were established to mimic fluid movement. A grid-
based approach, also referred to as the Eulerian approach [19], and a particle-based
approach, also referred to as the Lagrangian approach [20]. In the former, each
cell tracks how much fluid is inside it and computes how water flows between cell
points. This method produces better results but it can lead to ravines and has a
higher computational time since the states of all cells have to be computed at each
step. With the Lagrangian technique, the movement of water particles is simulated.
Droplet information such as velocity, carry capacity, and position is stored and the
particle is moved according to those properties. It is less accurate than the Eulerian
approach but is computationally faster and more suitable for real-time terrain
generation. Therefore, I chose to implement particle-based erosion following Hans
Theobald Beyer’s algorithm [21].

4.4.1.1 Droplet Parameters

Every water particle stores the following information:

• The particle’s position as 2D vector.

• The flow direction as a 2D normalized vector.

• The speed of flow as a float and initially zero.

• The amount of water in the droplet as float.

• The amount of sediment carried as a float and initially zero.

At each step, we wish to move the drop to a local minimum by computing the
gradient g of the current droplet position pold, we obtain g by bilinearly interpolating
the gradients of the surrounding cell points.

Let:
pold = (x+ u, y + v) (4.8)

with u and v the relative coordinates of the droplet inside the cell. The gradients
of the surrounding points p1(x, y), p2(x + 1, y), p3(x, y + 1), and p4(x + 1, y + 1)
are the following:
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g(p1) = (p2 − p1, p3 − p1)

g(p2) = (p2 − p1, p4 − p2)

g(p3) = (p4 − p3, p3 − p1)

g(p4) = (p4 − p3, p4 − p2)

(4.9)

Using bilinear interpolation:

g(pold) =
(p2 − p1) · (1− v) + (p4 − p3) · v
(p3 − p1) · (1− u) + (p4 − p2) · u

 (4.10)

The resulting gradient g is then used to determine the new flow direction of the
droplet along with an inertia value between 0 and 1. The latter decides how much
the old direction and the gradient contribute to he new direction vector. A random
direction is generated if the gradient is zero.

directionnew = directionold · pinertia + g · (1− pinertia) (4.11)

Consequently, the updated position of the water droplet is computed using the
new direction vector:

pnew = pold + directionnew (4.12)

If the new position falls outside the terrain borders, the droplet stops flowing.

4.4.1.2 Erosion and Deposition

We also compute the height difference between the old and new positions. If
it is positive, the drop moved uphill and the carried sediment is deposited at the
previous position. The deposited sediment should not exceed the height difference
to avoid creating spikes.

deposited = min(sediment, height difference) (4.13)
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The sediment is distributed along the four cell points surrounding the current
position using bilinear interpolation.

If the height difference is negative, the drop moved downhill and could either erode
or deposit sediment depending on the droplet carry capacity c. The carry capacity
is high when the droplet goes down fast and carries a lot of water. To prevent
the carry capacity from falling too close to 0 when the height difference is small,
a minimum slope pminSlope value is selected. Additionally, the parameter pcapacity
determines the amount of sediment a drop can carry.

c = max(−height difference · pminSlope) · vel · water · pcapacity (4.14)

If the droplet is carrying more sediment than the set capacity, a percentage of the
sediment surplus is deposited at the old position. Dropping more than the surplus
can result in spikes.

(sediment− c) · pdeposition (4.15)

If the carried sediment does not exceed the allowed capacity, we erode a percentage
of the remaining capacity without exceeding the height difference to avoid pits.

min((c− sediment) · pErode,−height difference) (4.16)

Similarly to deposition, I erode evenly the corners of the grid cell using bilinear
interpolation.

After each step of the droplet flow, the speed is updated with more emphasis on
speed inheritance and the water gradually evaporates.

velnew =
√
vel2old + hdiff · pgravity (4.17)

waternew = waterold · (1− pevaporation) (4.18)

To ensure that the droplet does not flow endlessly, a maximum number of steps is
assigned per drop.

29



Figure 4.19: No erosion, 30K droplet with a maximum path of 5, and 30K droplet
with a maximum path of 20
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4.4.2 Thermal Erosion

Thermal erosion models the erosion of steep cliffs that crack up due to temperature
changes and fall down [22]. If the height difference between the current position
and neighboring grid points exceeds a set value T , the soil is eroded from the
current position and deposited into the lower points. While the algorithm is
quick and simple, the results are not realistic. Therefore, only hydraulic erosion is
implemented in this project.

4.5 L-Systems

In 1968, Hungarian biologist and botanist Lindenmayer proposed a context-free
grammar (CFG) called L-systems [23]. It describes the development of simple
cellular organisms such as algae. It was originally inspired by the self-similarity
that exists in nature or what Mandelbrot called Fractals. A fractal object can
be produced by repeating a pattern recursively. With the recursive branching in
trees, L-systems are suitable to model them.

Our L-systems formal grammar consists of:

• Terminals: The language’s alphabet.

• Nonterminals: Other symbols used in the grammar.

• Axiom: The initial state or start symbol.

• Production rules: Rules used to generate sentences.

• Number of iterations

For example, given the following symbolic alphabet:

• ’F’: Draw a line forward of length d.

• ’+’: Rotate right by δ degrees.

• ’-’: Rotate left by δ degrees.
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• ’[’: Store the current state by pushing into a log stack.

• ’]’: Recover the last stored state by popping from the log stack.

The axiom is set to be X (Nonterminal) and the production rules are defined as
follows: 

X → [FF [+XF − F + FX]−−F + F − FX]

F → FF
(4.19)

Additionally, with δ = 30° we get the following results with 3 iterations:

Figure 4.20: Sample tree based on rules 4.19

By applying different rules we can spawn different types of trees.
For instance, while keeping the same angle and changing the production rules to:


X → F − [[X] +X] + F [+FX]−X

F → FF
(4.20)

We get the following results with 4 iterations:

32



Figure 4.21: Sample tree based on rules 4.20

Given the time restrictions, adding more details such as leaves, angling branches
in more than 3 directions, and placement algorithms were not explored.
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5 STEEPLE Analysis

The STEEPLE analysis tool assesses this project’s implications on society as a
whole. The following is the STEEPLE analysis for PCG in ecosystems:

5.1 Social Impact

This project on its own has no social impact but can be extended to create
serious games. For instance, in healthcare, access to rehabilitation facilities is
a challenge for low-income households and rural areas [6]. With the increase
in disabilities caused by autoimmune diseases and injury [7], patients displayed
more motivation and engagement when rehabilitation exercises were performed
in a game environment [8]. PCG is now being used in research for physical
rehabilitation programs and allows for the generation of new interesting and personalized
content that keeps the patient engaged [9].

5.2 Technological Impact

The technological impact lies in improving the replayability of media while minimizing
CPU and memory utilization. This work will allow game studios and independent
developers to introduce variance to their projects while maintaining some control
over the output.

5.3 Economical Impact

This project will be open-source nonprofit software. It can be used for educational
purposes or for other individuals to use as a building block in their own projects.

5.4 Environmental Impact

This project on its own has no environmental impact on its own but can be
extended to create educational serious games about issues such as climate change.
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5.5 Political Impact

This project does not have any political implications.

5.6 Legal Impact

This project does not have any legal implications.

5.7 Ethical Impact

This project will abide by the morals and legal code when it comes to intellectual
property.

35



6 Engineering Standards

No relevant engineering standards were found for game engines, scene generation,
and game design. Additionally, since the purpose of the project is to explore
and implement algorithms related to scene generation, engineering standards for
commercially-released games are not relevant. The only standard we are concerned
with is ISO/IEC 23270:2003 Information technology— C# Language Specification.
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7 Final Remarks

7.1 Challenges

The main challenge I faced in the course of my capstone is getting familiar with
shader programming. One of the goals I had to give up was texture mapping.
While I managed to assign different colors to different heights as seen in 7.1, I was
not successful with texture interpolation.

Figure 7.1: Colouring with shaders

Another challenge was the lack of resources needed to understand complex algorithms
such as the Simplex Noise. Most resources I stumbled upon did not explain kernel
summation and skewing. It took me numerous iterations to fully grasp how the
algorithm works.

Finally, although my work was inspired by [21] and [6]. The proposed approaches
sometimes did not suit my terrain design. Therefore, it was through trial and error
that I obtained the final game world. Given the lack of community support for
bugs and errors, the development phase ended up taking longer than anticipated.
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7.2 Future Work

More work has to be done to make the environment navigable from a first-person
perspective. Future work will focus on the following:

• Shader Programming: To ensure a more immersive experience, texture
mapping, and water animations should be added.

• 3D L-systems: Expanding the branching angles and adding terminals for
leaves and flowers. Algorithms to procedurally place trees around should
also be explored (e.g a variation of Poisson disk sampling with an increased
density near water sources).

• Pseudo-infinite generation: Inspired by Charack [9], I wish to optimally
store data for a large-scale world. Since we are only storing the seed for each
mesh, the smooth transition between different meshes is the main concern
for this section.

7.3 Conclusion

This project explored the creation of a full-fledged procedurally generated natural
3D game world. To achieve this, I generated my 2D height maps by using fractal
noise that combines layers of Perlin noise and Simplex noise. I then convert my
2D map to a triangulated mesh by assigning vertices, UVs, and triangles, and
recalculating the normals. The landscape is refined further using particle-based
hydraulic erosion and L-systems grammar is used to procedurally generate trees.
This project shows that PCG is a valuable tool for creating game content. It cuts
down the development time and cost for indie game developers and allows artists
and designers to focus on game mechanics, stories, and other game components.

Overall, this was a wonderful learning experience where I got to explore the field of
computer graphics. I am also eager to further develop this project and explore more
biotic and abiotic components in my ecosystem, such as animals and atmosphere.

38



References

[1] J. Togelius, E. Kastbjerg, D. Schedl, and G. Yannakakis, “What is procedural
content generation? mario on the borderline,” Jan. 2011. doi: 10.1145/
2000919.2000922.

[2] I. Kotsia, S. Zafeiriou, and S. Fotopoulos, “Affective gaming: A comprehensive
survey,” 2013 IEEE Conference on Computer Vision and Pattern Recognition
Workshops, 2013. doi: 10.1109/cvprw.2013.100.

[3] G. Smith, E. Gan, A. Othenin-Girard, and J. Whitehead, “Pcg-based game
design,” Proceedings of the 2nd International Workshop on Procedural Content
Generation in Games - PCGames ’11, 2011. doi: 10.1145/2000919.2000926.

[4] D. Braben and I. Bell, Elite, 1984.

[5] No man’s sky (ps4 game), 2015.

[6] T. Gao and J. Zhu, “A survey of procedural content generation of natural
objects in games,” 2022 International Conference on Artificial Intelligence in
Information and Communication (ICAIIC), 2022. doi: 10.1109/icaiic54071.
2022.9722677.

[7] F. K. Musgrave, C. E. Kolb, and R. S. Mace, “The synthesis and rendering
of eroded fractal terrains,” vol. 23, no. 3, 1989, issn: 0097-8930. doi: 10.
1145/74334.74337.

[8] E. W. Hidayat, I. K. Putra, I. A. Giriantari, and M. Sudarma, “Visualization
of a two-dimensional tree modeling using fractal based on l-system,” IOP
Conference Series: Materials Science and Engineering, vol. 550, no. 1, p. 012 027,
2019. doi: 10.1088/1757-899x/550/1/012027.

[9] F. Bevilacqua, C. T. Pozzer, and M. C. d’Ornellas, “Charack: Tool for real-
time generation of pseudo-infinite virtual worlds for 3d games,” 2009 VIII
Brazilian Symposium on Games and Digital Entertainment, 2009. doi: 10.
1109/sbgames.2009.21.

[10] T. Mogensen, Instant planet generator, 2009. [Online]. Available: http://
www.eldritch.org/erskin/roleplaying/planet.php.

39

https://doi.org/10.1145/2000919.2000922
https://doi.org/10.1145/2000919.2000922
https://doi.org/10.1109/cvprw.2013.100
https://doi.org/10.1145/2000919.2000926
https://doi.org/10.1109/icaiic54071.2022.9722677
https://doi.org/10.1109/icaiic54071.2022.9722677
https://doi.org/10.1145/74334.74337
https://doi.org/10.1145/74334.74337
https://doi.org/10.1088/1757-899x/550/1/012027
https://doi.org/10.1109/sbgames.2009.21
https://doi.org/10.1109/sbgames.2009.21
http://www.eldritch.org/erskin/roleplaying/planet.php
http://www.eldritch.org/erskin/roleplaying/planet.php


[11] M. Kahoun, “Realtime library for procedural generation and rendering of
terrains,” Master’s thesis, 2013.

[12] A. Wulff-Jensen, N. N. Rant, T. N. Møller, and J. A. Billeskov, “Deep
convolutional generative adversarial network for procedural 3d landscape
generation based on dem,” Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering, pp. 85–94, 2018.
doi: 10.1007/978-3-319-76908-0_9.

[13] A. Summerville, S. Snodgrass, M. Guzdial, et al., “Procedural content generation
via machine learning (pcgml),” IEEE Transactions on Games, vol. 10, no. 3,
pp. 257–270, 2018. doi: 10.1109/tg.2018.2846639.

[14] K. Perlin, “Improving noise,” vol. 21, no. 3, 2002, issn: 0730-0301. doi:
10.1145/566654.566636. [Online]. Available: https://doi.org/10.1145/
566654.566636.

[15] S. Gustavson, “Simplex noise demystified,” Aug. 2015. doi: 10.13140/RG.
2.1.3369.6488.

[16] T. J. Rose and A. G. Bakaoukas, “Algorithms and approaches for procedural
terrain generation - a brief review of current techniques,” 2016 8th International
Conference on Games and Virtual Worlds for Serious Applications (VS-
GAMES), 2016. doi: 10.1109/vs-games.2016.7590336.

[17] U. Technologies, Example: Creating a quad. [Online]. Available: https://
docs.unity3d.com/Manual/Example-CreatingaBillboardPlane.html.
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